Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Language
Publication year range
1.
Pathogens ; 13(2)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38392842

ABSTRACT

Protein synthesis has been a very rich target for developing drugs to control prokaryotic and eukaryotic pathogens. Despite the development of new drug formulations, treating human cutaneous and visceral Leishmaniasis still needs significant improvements due to the considerable side effects and low adherence associated with the current treatment regimen. In this work, we show that the di-substituted urea-derived compounds I-17 and 3m are effective in inhibiting the promastigote growth of different Leishmania species and reducing the macrophage intracellular load of amastigotes of the Leishmania (L.) amazonensis and L. major species, in addition to exhibiting low macrophage cytotoxicity. We also show a potential immunomodulatory effect of I-17 and 3m in infected macrophages, which exhibited increased expression of inducible Nitric Oxide Synthase (NOS2) and production of Nitric Oxide (NO). Our data indicate that I-17, 3m, and their analogs may be helpful in developing new drugs for treating leishmaniasis.

2.
Exp Eye Res ; 225: 109274, 2022 12.
Article in English | MEDLINE | ID: mdl-36252655

ABSTRACT

The cornea and covering tear film are together the 'objective lens' of the eye through which 80% of light is refracted. Despite exposure to a physically harsh and at times infectious or toxic environment, transparency essential for sight is in most cases maintained. Such resiliency makes the avascular cornea a superb model for the exploration of autophagy in the regulation of homeostasis with relevancy to all organs. Nonetheless, missense mutations and inflammation respectively clog or apparently overwhelm autophagic flux to create dystrophies much like in neurodegenerative diseases or further exacerbate inflammation. Here there is opportunity to generate novel topical therapies towards the restoration of homeostasis with potential broad application.


Subject(s)
Cornea , Lens, Crystalline , Humans , Cornea/physiology , Tears , Autophagy/physiology , Inflammation
3.
Sci Rep ; 8(1): 4857, 2018 03 20.
Article in English | MEDLINE | ID: mdl-29559670

ABSTRACT

Some 1,3-diarylureas and 1-((1,4-trans)-4-aryloxycyclohexyl)-3-arylureas (cHAUs) activate heme-regulated kinase causing protein synthesis inhibition via phosphorylation of the eukaryotic translation initiation factor 2 (eIF2) in mammalian cancer cells. To evaluate if these agents have potential to inhibit trypanosome multiplication by also affecting the phosphorylation of eIF2 alpha subunit (eIF2α), we tested 25 analogs of 1,3-diarylureas and cHAUs against Trypanosoma cruzi, the agent of Chagas disease. One of them (I-17) presented selectivity close to 10-fold against the insect replicative forms and also inhibited the multiplication of T. cruzi inside mammalian cells with an EC50 of 1-3 µM and a selectivity of 17-fold. I-17 also prevented replication of African trypanosomes (Trypanosoma brucei bloodstream and procyclic forms) at similar doses. It caused changes in the T. cruzi morphology, arrested parasite cell cycle in G1 phase, and promoted phosphorylation of eIF2α with a robust decrease in ribosome association with mRNA. The activity against T. brucei also implicates eIF2α phosphorylation, as replacement of WT-eIF2α with a non-phosphorylatable eIF2α, or knocking down eIF2 protein kinase-3 by RNAi increased resistance to I-17. Therefore, we demonstrate that eIF2α phosphorylation can be engaged to develop trypanosome-static agents in general, and particularly by interfering with activity of eIF2 kinases.


Subject(s)
Protozoan Proteins/metabolism , Trypanosoma brucei brucei/drug effects , Trypanosoma brucei brucei/metabolism , Trypanosoma cruzi/drug effects , Trypanosoma cruzi/metabolism , Urea/metabolism , Urea/pharmacology , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Chagas Disease/microbiology , Eukaryotic Initiation Factor-2/metabolism , G1 Phase/drug effects , Heme/metabolism , Humans , Myoblasts/drug effects , Myoblasts/parasitology , Parasitic Sensitivity Tests , Phosphorylation , Rats , Urea/analogs & derivatives , eIF-2 Kinase/metabolism
4.
Sci Rep, v. 8, 4857, mar. 2018
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2402

ABSTRACT

Some 1,3-diarylureas and 1-((1,4-trans)-4-aryloxycyclohexyl)-3-arylureas (cHAUs) activate heme-regulated kinase causing protein synthesis inhibition via phosphorylation of the eukaryotic translation initiation factor 2 (eIF2) in mammalian cancer cells. To evaluate if these agents have potential to inhibit trypanosome multiplication by also affecting the phosphorylation of eIF2 alpha subunit (eIF2 alpha), we tested 25 analogs of 1,3-diarylureas and cHAUs against Trypanosoma cruzi, the agent of Chagas disease. One of them (I-17) presented selectivity close to 10-fold against the insect replicative forms and also inhibited the multiplication of T. cruzi inside mammalian cells with an EC50 of 1-3 mu M and a selectivity of 17-fold. I-17 also prevented replication of African trypanosomes (Trypanosoma brucei bloodstream and procyclic forms) at similar doses. It caused changes in the T. cruzi morphology, arrested parasite cell cycle in G1 phase, and promoted phosphorylation of eIF2 alpha with a robust decrease in ribosome association with mRNA. The activity against T. brucei also implicates eIF2 alpha phosphorylation, as replacement of WT-eIF2 alpha with a non-phosphorylatable eIF2 alpha, or knocking down eIF2 protein kinase-3 by RNAi increased resistance to I-17. Therefore, we demonstrate that eIF2 alpha phosphorylation can be engaged to develop trypanosome-static agents in general, and particularly by interfering with activity of eIF2 kinases.

5.
Sci Rep ; 8: 4857, 2018.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib14893

ABSTRACT

Some 1,3-diarylureas and 1-((1,4-trans)-4-aryloxycyclohexyl)-3-arylureas (cHAUs) activate heme-regulated kinase causing protein synthesis inhibition via phosphorylation of the eukaryotic translation initiation factor 2 (eIF2) in mammalian cancer cells. To evaluate if these agents have potential to inhibit trypanosome multiplication by also affecting the phosphorylation of eIF2 alpha subunit (eIF2 alpha), we tested 25 analogs of 1,3-diarylureas and cHAUs against Trypanosoma cruzi, the agent of Chagas disease. One of them (I-17) presented selectivity close to 10-fold against the insect replicative forms and also inhibited the multiplication of T. cruzi inside mammalian cells with an EC50 of 1-3 mu M and a selectivity of 17-fold. I-17 also prevented replication of African trypanosomes (Trypanosoma brucei bloodstream and procyclic forms) at similar doses. It caused changes in the T. cruzi morphology, arrested parasite cell cycle in G1 phase, and promoted phosphorylation of eIF2 alpha with a robust decrease in ribosome association with mRNA. The activity against T. brucei also implicates eIF2 alpha phosphorylation, as replacement of WT-eIF2 alpha with a non-phosphorylatable eIF2 alpha, or knocking down eIF2 protein kinase-3 by RNAi increased resistance to I-17. Therefore, we demonstrate that eIF2 alpha phosphorylation can be engaged to develop trypanosome-static agents in general, and particularly by interfering with activity of eIF2 kinases.

6.
Sci Rep ; 7(1): 17074, 2017 12 06.
Article in English | MEDLINE | ID: mdl-29213084

ABSTRACT

Leishmania parasites utilize adaptive evasion mechanisms in infected macrophages to overcome host defenses and proliferate. We report here that the PERK/eIF2α/ATF4 signaling branch of the integrated endoplasmic reticulum stress response (IERSR) is activated by Leishmania and this pathway is important for Leishmania amazonensis infection. Knocking down PERK or ATF4 expression or inhibiting PERK kinase activity diminished L. amazonensis infection. Knocking down ATF4 decreased NRF2 expression and its nuclear translocation, reduced HO-1 expression and increased nitric oxide production. Meanwhile, the increased expression of ATF4 and HO-1 mRNAs were observed in lesions derived from patients infected with the prevalent related species L.(V.) braziliensis. Our data demonstrates that Leishmania parasites activate the PERK/eIF2α/ATF-4 pathway in cultured macrophages and infected human tissue and that this pathway is important for parasite survival and progression of the infection.


Subject(s)
Activating Transcription Factor 4/metabolism , Eukaryotic Initiation Factor-2/metabolism , Leishmaniasis, Cutaneous/pathology , Activating Transcription Factor 4/antagonists & inhibitors , Activating Transcription Factor 4/genetics , Animals , Endoplasmic Reticulum Stress , HEK293 Cells , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Humans , Leishmania/pathogenicity , Leishmaniasis, Cutaneous/metabolism , Macrophages/cytology , Macrophages/metabolism , Macrophages/parasitology , Mice , Mice, Inbred C57BL , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Nitric Oxide/metabolism , Phosphorylation , RAW 264.7 Cells , RNA Interference , RNA, Small Interfering/metabolism
7.
Front Immunol ; 8: 1127, 2017.
Article in English | MEDLINE | ID: mdl-28959260

ABSTRACT

Leishmania parasites infect macrophages, causing a wide spectrum of human diseases, from cutaneous to visceral forms. In search of novel therapeutic targets, we performed comprehensive in vitro and ex vivo mapping of the signaling pathways upstream and downstream of antioxidant transcription factor [nuclear factor erythroid 2-related factor 2 (Nrf2)] in cutaneous leishmaniasis (CL), by combining functional assays in human and murine macrophages with a systems biology analysis of in situ (skin biopsies) CL patient samples. First, we show the PKR pathway controls the expression and activation of Nrf2 in Leishmania amazonensis infection in vitro. Nrf2 activation also required PI3K/Akt signaling and autophagy mechanisms. Nrf2- or PKR/Akt-deficient macrophages exhibited increased levels of ROS/RNS and reduced expression of Sod1 Nrf2-dependent gene and reduced parasite load. L. amazonensis counteracted the Nrf2 inhibitor Keap1 through the upregulation of p62 via PKR. This Nrf2/Keap1 observation was confirmed in situ in skin biopsies from Leishmania-infected patients. Next, we explored the ex vivo transcriptome in CL patients, as compared to healthy controls. We found the antioxidant response element/Nrf2 signaling pathway was significantly upregulated in CL, including downstream target p62. In silico enrichment analysis confirmed upstream signaling by interferon and PI3K/Akt, and validated our in vitro findings. Our integrated in vitro, ex vivo, and in silico approach establish Nrf2 as a central player in human cutaneous leishmaniasis and reveal Nrf2/PKR crosstalk and PI3K/Akt pathways as potential therapeutic targets.

8.
J Med Chem ; 60(13): 5392-5406, 2017 07 13.
Article in English | MEDLINE | ID: mdl-28590739

ABSTRACT

Heme-regulated inhibitor (HRI), an eukaryotic translation initiation factor 2 alpha (eIF2α) kinase, plays critical roles in cell proliferation, differentiation, adaptation to stress, and hemoglobin disorders. HRI phosphorylates eIF2α, which couples cellular signals, including endoplasmic reticulum (ER) stress, to translation. We previously identified 1,3-diarylureas and 1-((1,4-trans)-4-aryloxycyclohexyl)-3-arylureas (cHAUs) as specific activators of HRI that trigger the eIF2α phosphorylation arm of ER stress response as molecular probes for studying HRI biology and its potential as a druggable target. To develop drug-like cHAUs needed for in vivo studies, we undertook bioassay-guided structure-activity relationship studies and tested them in the surrogate eIF2α phosphorylation and cell proliferation assays. We further evaluated some of these cHAUs in endogenous eIF2α phosphorylation and in the expression of the transcription factor C/EBP homologous protein (CHOP) and its mRNA, demonstrating significantly improved solubility and/or potencies. These cHAUs are excellent candidates for lead optimization for development of investigational new drugs that potently and specifically activate HRI.


Subject(s)
Antineoplastic Agents/pharmacology , Endoplasmic Reticulum Stress/drug effects , Eukaryotic Initiation Factor-2/antagonists & inhibitors , Phosphorylation/drug effects , Skin Neoplasms/drug therapy , Urea/pharmacology , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Eukaryotic Initiation Factor-2/metabolism , Humans , Melanoma, Experimental/drug therapy , Melanoma, Experimental/pathology , Mice , Molecular Structure , Skin Neoplasms/pathology , Structure-Activity Relationship , Urea/analysis , Urea/chemistry
9.
FASEB J ; 30(4): 1557-65, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26678450

ABSTRACT

Endoplasmic reticulum (ER) stress triggers the integrated ER-stress response (IERSR) that ensures cellular survival of ER stress and represents a primordial form of innate immunity. We investigated the role of IERSR duringLeishmania amazonensisinfection. Treatment of RAW 264.7 infected macrophages with the ER stress-inducing agent thapsigargin (TG; 1 µM) increasedL. amazonensisinfectivity in an IFN1-α receptor (IFNAR)-dependent manner. In Western blot assays, we showed thatL. amazonensisactivates the inositol-requiring enzyme (IRE1)/ X-box binding protein (XBP)-1-splicing arms of the IERSR in host cells. In chromatin immunoprecipitation (ChIP) assays, we showed an increased occupancy of enhancer and promoter sequences for theIfnbgene by XBP1 in infected RAW 264.7 cells. Knocking down XBP1 expression by transducing RAW 264.7 cells with the short hairpin XBP1 lentiviral vector significantly reduced the parasite proliferation associated with impaired translocation of phosphorylated IFN regulatory transcription factor (IRF)-3 to the nucleus and a decrease in IFN1-ß expression. Knocking down XBP1 expression also increased NO concentration, as determined by Griess reaction and reduced the expression of antioxidant genes, such as heme oxygenase (HO)-1, that protect parasites from oxidative stress. We conclude thatL. amazonensisactivation of XBP1 plays a critical role in infection by protecting the parasites from oxidative stress and increasing IFN1-ß expression.-Dias-Teixeira, K. L., Calegari-Silva, T. C., Dos Santos, G. R. R. M., Vitorino dos Santos, J., Lima, C., Medina, J. M., Aktas, B. H., Lopes, U. G. The integrated endoplasmic reticulum stress response inLeishmania amazonensismacrophage infection: the role of X-box binding protein 1 transcription factor.


Subject(s)
DNA-Binding Proteins/metabolism , Endoplasmic Reticulum Stress , Leishmania/physiology , Macrophages/metabolism , Macrophages/microbiology , Transcription Factors/metabolism , Animals , Blotting, Western , Cell Line , DNA-Binding Proteins/genetics , Gene Expression , HEK293 Cells , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Host-Parasite Interactions , Humans , Interferon-beta/genetics , Interferon-beta/metabolism , Macrophages/drug effects , Mice , Promoter Regions, Genetic/genetics , Protein Binding , RNA Interference , Reactive Oxygen Species/metabolism , Regulatory Factor X Transcription Factors , Reverse Transcriptase Polymerase Chain Reaction , Thapsigargin/pharmacology , Transcription Factors/genetics , X-Box Binding Protein 1
SELECTION OF CITATIONS
SEARCH DETAIL
...